高中一年级下册数学必学二要点汇总

点击数:549 | 发布时间:2025-02-07 | 来源:www.umucn.com

    仰望天空时,什么都比你高,你会自卑;俯瞰大地时,什么都比你低,你会自负;只有放宽视线,把天空和大地尽收眼底,才能在苍穹沃土之间找到你真的的地方。不需要自卑,不要自负,坚持自信。智学网高中一年级频道为你整理了《高中一年级下册数学必学二要点汇总》期望你对你的学习有所帮助!

    公理1:假如一条直线上的两点在一个平面内,那样这条直线上的所有些点都在这个平面内。公理2:假如两个平面有一个公共点,那样它们有且只有一条通过这个点的公共直线。公理3:过不在同一条直线上的三个点,有且只有一个平面。

    推论1:经过一条直线和这条直线外一点,有且只有一个平面。

    推论2:经过两条相交直线,有且只有一个平面。

    推论3:经过两条平行直线,有且只有一个平面。

    公理4:平行于同一条直线的两条直线互相平行。

    等角定理:假如一个角的两边和另一个角的两边分别平行并且方向相同,那样这两个角相等。

    空间两条直线只有三种地方关系:平行、相交、异面

    1、按是不是共面可分为两类:

    共面:平行、相交

    异面:

    异面直线的概念:不同在任何一个平面内的两条直线或既不平行也不相交。

    异面直线断定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

    两异面直线所成的角:范围为esp.空间向量法

    两异面直线间距离:公垂线段esp.空间向量法

    2、若从有无公共点的角度看可分为两类:

    有且仅有一个公共点——相交直线;没公共点——平行或异面

    直线和平面的地方关系:

    直线和平面只有三种地方关系:在平面内、与平面相交、与平面平行

    ①直线在平面内——有无数个公共点

    ②直线和平面相交——有且只有一个公共点

    直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

    空间向量法

    规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

    由此得直线和平面所成角的取值范围为[0°,90°]

    最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

    三垂线定理及逆定理:假如平面内的一条直线,与这个平面的一条斜线的射影垂直,那样它也与这条斜线垂直

    直线和平面垂直

    直线和平面垂直的概念:假如一条直线a和一个平面内的任意一条直线都垂直,大家就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

    直线与平面垂直的断定定理:假如一条直线和一个平面内的两条相交直线都垂直,那样这条直线垂直于这个平面。

    直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那样这两条直线平行。③直线和平面平行——没公共点

    直线和平面平行的概念:假如一条直线和一个平面没公共点,那样大家就说这条直线和这个平面平行。

    直线和平面平行的断定定理:假如平面外一条直线和这个平面内的一条直线平行,那样这条直线和这个平面平行。

    直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那样这条直线和交线平行。

    两个平面互相平行的概念:空间两平面没公共点

    两个平面的地方关系:

    两个平面平行-----没公共点;两个平面相交-----有一条公共直线。

    a、平行

    两个平面平行的断定定理:假如一个平面内有两条相交直线都平行于另一个平面,那样这两个平面平行。

    两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那样交线平行。b、相交

    二面角

    半平面:平面内的一条直线把这个平面分成两个部分,其中每个部分叫做半平面。

    二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

    二面角的棱:这一条直线叫做二面角的棱。

    二面角的面:这两个半平面叫做二面角的面。

    二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

    直二面角:平面角是直角的二面角叫做直二面角。

    高中一年级数学必学二要点汇总:两平面垂直

    两平面垂直的概念:两平面相交,假如所成的角是直二面角,就说这两个平面互相垂直。记为⊥

    两平面垂直的断定定理:假如一个平面经过另一个平面的一条垂线,那样这两个平面互相垂直

    两个平面垂直的性质定理:假如两个平面互相垂直,那样在一个平

    二面角求法:直接法、三垂线定理及逆定理、面积射影定理、空间向量之法向量法

    1、棱柱

    棱柱的概念:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这类面围成的几何体叫做棱柱。

    棱柱的性质

    侧棱都相等,侧面是平行四边形

    两个底面与平行于底面的截面是全等的多边形

    过不相邻的两条侧棱的截面是平行四边形

    2、棱锥

    棱锥的概念:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这类面围成的几何体叫做棱锥

    棱锥的性质:

    侧棱交于一点。侧面都是三角形

    平行于底面的截面与底面是一样的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

    3、正棱锥

    正棱锥的概念:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,如此的棱锥叫做正棱锥。

    正棱锥的性质:

    各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

    多个特殊的直角三角形

    a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

    b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 国家人事网(https://www.zbxggc.com/)
All Rights Reserverd ICP备18037099号-1

  • 国家人事网微博

  • 国家人事网

首页

财经

建筑

医疗