高中一年级数学的学习,需要大伙对要点进行总结,如此大伙可以更快地提升我们的学习成绩,智学网为各位同学整理了《高中一年级数学要点总结笔记必学二》,期望对你的学习有所帮助!
1.高中一年级数学要点总结笔记必学二 篇一
数列
数列的'定义和简单表示法
①知道数列的定义和几种简单的表示办法.
②知道数列是自变量为正整数的一类函数.
等差数列、等比数列
①理解等差数列、等比数列的定义.
②学会等差数列、等比数列的通项公式与前项和公式.
③能在具体的问题情境中,辨别数列的等差关系或等比关系,并可以用有关常识解决相应的问题.
④知道等差数列与一次函数、等比数列与指数函数的关系.
2.高中一年级数学要点总结笔记必学二 篇二
集合的分类:
(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集
关于集合的定义:
(1)确定性:作为一个集合的元素,需要是确定的,这就是说,不可以确定的对象就不可以构成集合,也就是说,给定一个集合,任何一个对象是否这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素肯定是不一样的(或说是互异的),这就是说,集合中的任何两个元素都是不一样的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,重点在于看这类对象是不是有明确的规范。
集合可以参考它含有些元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;
在自然数集内排除0的'集合叫做正整数集,记作N+或N*;
整数全体构成的集合,叫做整数集,记作Z;
有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,所有有理数都可以化成分数的形式。)
实数全体构成的集合,叫做实数集,记作R。(包含有理数和无理数。其中无理数就是无限不循环小数,有理数就包含整数和分数。数学上,实数直观地概念为和数轴上的点一一对应的数。)
3.高中一年级数学要点总结笔记必学二 篇三
二面角
半平面:平面内的一条直线把这个平面分成两个部分,其中每个部分叫做半平面。
二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
二面角的棱:这一条直线叫做二面角的棱。
二面角的面:这两个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
直二面角:平面角是直角的二面角叫做直二面角。
4.高中一年级数学要点总结笔记必学二 篇四
多面体
1、棱柱
棱柱的概念:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这类面围成的几何体叫做棱柱。
棱柱的性质
侧棱都相等,侧面是平行四边形
两个底面与平行于底面的截面是全等的多边形
过不相邻的两条侧棱的截面是平行四边形
2、棱锥
棱锥的概念:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这类面围成的几何体叫做棱锥
棱锥的性质:
侧棱交于一点。侧面都是三角形
平行于底面的截面与底面是一样的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
3、正棱锥
正棱锥的概念:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,如此的棱锥叫做正棱锥。
正棱锥的性质:
各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
5.高中一年级数学要点总结笔记必学二 篇五
空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,基本步骤是:
画几何体的底面
在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。
画几何体的高
在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。