高中一年级数学必学四要点复习

点击数:710 | 发布时间:2024-11-09 | 来源:www.xixiupu.com

    高中一年级新生要依据我们的条件,与高中阶段学科常识交叉多、综合性强,与考查的常识和思维触点广的特征,找寻一套行之有效的学习技巧。智学网为各位同学整理了《高中一年级数学必学四要点复习》,期望对你的学习有所帮助!

    1.高中一年级数学必学四要点复习


    概念:

    形如y=x^a的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

    概念域和值域:

    当a为不一样的数值时,幂函数的概念域的不同状况如下:

    假如a为任意实数,则函数的概念域为大于0的所有实数;假如a为负数,则x一定不可以为0,不过这个时候函数的概念域还需要根[据q的奇偶性来确定,即假如同时q为偶数,则x不可以小于0,这个时候函数的概念域为大于0的所有实数;假如同时q为奇数,则函数的概念域为不等于0的所有实数。

    当x为不一样的数值时,幂函数的值域的不同状况如下:

    在x大于0时,函数的值域一直大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

    性质:

    对于a的取值为非零有理数,有必要分成几种状况来讨论各自的特质:

    第一大家了解假如a=p/q,q和p都是整数,则x^=q次根号,假如q是奇数,函数的概念域是R,假如q是偶数,函数的概念域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/,显然x≠0,函数的概念域是∪.因此可以看到x所遭到的限制源自两点,一是大概作为分母而不可以是0,一是大概在偶数次的根号下而不可以为负数,那样大家就能了解:

    排除去为0与负数两种可能,即对于x0,则a可以是任意实数;

    排除去为0这种可能,即对于x

    排除去为负数这种可能,即对于x为大于且等于0的所有实数,a就不可以是负数。

    总结起来,就能得到当a为不一样的数值时,幂函数的概念域的不同状况如下:

    假如a为任意实数,则函数的概念域为大于0的所有实数;

    假如a为负数,则x一定不可以为0,不过这个时候函数的概念域还需要依据q的奇偶性来确定,即假如同时q为偶数,则x不可以小于0,这个时候函数的概念域为大于0的所有实数;假如同时q为奇数,则函数的概念域为不等于0的所有实数。

    在x大于0时,函数的值域一直大于0的实数。

    在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

    而只有a为正数,0才进入函数的值域。

    因为x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自状况.

    2.高中一年级数学必学四要点复习

    解三角形

    正弦定理和余弦定理

    学会正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

    应用

    可以运用正弦定理、余弦定理等常识和办法解决一些与测量和几何计算有关的实质问题.

    数列

    数列的定义和简单表示法

    ①知道数列的定义和几种简单的表示办法.

    ②知道数列是自变量为正整数的一类函数.

    等差数列、等比数列

    ①理解等差数列、等比数列的定义.

    ②学会等差数列、等比数列的通项公式与前项和公式.

    ③能在具体的问题情境中,辨别数列的等差关系或等比关系,并可以用有关常识解决相应的问题.

    ④知道等差数列与一次函数、等比数列与指数函数的关系.

    3.高中一年级数学必学四要点复习


    平面向量基本定义

    有向线段:具备方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;

    向量的模:有向线段AB的长度叫做向量的模,记作|AB|;

    零向量:长度等于0的向量叫做零向量,记作或0。;

    相等向量:长度相等且方向相同的向量叫做相等向量;

    平行向量:两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;

    单位向量:模等于1个单位长度的向量叫做单位向量,一般用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

    相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-=a,零向量的相反向量仍然是零向量。

    4.高中一年级数学必学四要点复习


    空间几何体表面积体积公式:

    1、圆柱体:表面积:2πRr+2πRh体积:πR2h

    2、圆锥体:表面积:πR2+πR[的]体积:πR2h/3V=abc

    5、棱柱S-h-高V=Sh

    6、棱锥S-h-高V=Sh/3

    7、S1和S2-上、下h-高V=h[S1+S2+^1/2]/3

    8、S1-上底面积,S2-下底面积,S0-中h-高,V=h/6

    9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

    10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh

    11、r-底半径h-高V=πr^2h/3

    12、r-上底半径,R-下底半径,h-高V=πh/313、球r-半径d-直径V=4/3πr^3=πd^3/6

    14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh/6=πh2/3

    15、球台r1和r2-球台上、下底半径h-高V=πh[3+h2]/6

    16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

    17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh/12,V=πh/15

    5.高中一年级数学必学四要点复习

    设α为任意角,终边相同的角的同一三角函数的值相等:

    sin=sinα

    cosplay=cosplayα

    tan=tanα

    cot=cotα

    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

    sin=-sinα

    cosplay=-cosplayα

    tan=tanα

    cot=cotα

    任意角α与-α的三角函数值之间的关系:

    sin=-sinα

    cosplay=cosplayα

    tan=-tanα

    cot=-cotα

    借助公式二和公式三可以得到π-α与α的三角函数值之间的关系:

    sin=sinα

    cosplay=-cosplayα

    tan=-tanα

    cot=-cotα

    借助公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

    sin=-sinα

    cosplay=cosplayα

    tan=-tanα

    cot=-cotα

    π/2±α及3π/2±α与α的三角函数值之间的关系:

    sin=cosplayα

    cosplay=-sinα

    tan=-cotα

    cot=-tanα

    sin=cosplayα

    cosplay=sinα

    tan=cotα

    cot=tanα

    sin=-cosplayα

    cosplay=sinα

    tan=-cotα

    cot=-tanα

    sin=-cosplayα

    cosplay=-sinα

    tan=cotα

    cot=tanα

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 国家人事网(https://www.zbxggc.com/)
All Rights Reserverd ICP备18037099号-1

  • 国家人事网微博

  • 国家人事网

首页

财经

建筑

医疗