数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分不少。智学网为各位同学整理了《高一下册数学复习要点笔记》,期望对你的学习有所帮助!
1.高一下册数学复习要点笔记 篇一
映射
一般地,设A、B是两个非空的函数,假如按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那样就称对应f:AB为从函数A到函数B的一个映射。记作“f:AB”
对于映射f:A→B来讲,则应满足:
函数A中的每个元素,在函数B中都有象,并且象是的;
函数A中不一样的元素,在函数B中对应的象可以是同一个;
不需要函数B中的每个元素在函数A中都有原象。
2.高一下册数学复习要点笔记 篇二
复数概念
大家把形如a+bi的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
复数表达式
虚数是与任何事物没联系的,是绝对的,所以符合的表达式为:
a=a+ia为实部,i为虚部
复数运算法则
加法法则:+=+i;
减法法则:-=+i;
乘法法则:·=+i;
除法法则:/=[/]+[/]i.
比如:[+]-[+i]=0,最后结果还是0,也就在数字中没复数的存在。[+]-[+i]=z是一个函数。
复数与几何
①几何形式
复数z=a+bi被复平面上的点z确定。这种形式使复数的问题可以借用图形来研究。也可反过来用复数的理论解决一些几何问题。
②向量形式
复数z=a+bi用一个以原点O为起点,点Z为终点的向量OZ表示。这种形式使复数四则运算得到适合的几何讲解。
③三角形式
复数z=a+bi化为三角形式
3.高一下册数学复习要点笔记 篇三
二面角
半平面:平面内的一条直线把这个平面分成两个部分,其中每个部分叫做半平面。
二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
二面角的棱:这一条直线叫做二面角的棱。
二面角的面:这两个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
直二面角:平面角是直角的二面角叫做直二面角。
4.高一下册数学复习要点笔记 篇四
求函数的值域或最值
求函数最值的常用办法和求函数值域的办法基本上是相同的.事实上,假如在函数的值域中存在一个最小数,这个数就是函数的最小值.因此求函数的最值与值域,其实质是相同的,只不过提问的角度不同.求函数值域与最值的常用办法:
①察看法:对于比较简单的函数,大家可以通过察看直接得到值域或最值.
②配办法:将函数分析式化成含有自变量的平方法与常数的和,然后依据变量的取值范围确定函数的值域或最值.
④不等式法:借助基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:借助函数和它的反函数的概念域与值域的互逆关系确定函数的值域或最值.
5.高一下册数学复习要点笔记 篇五
1、棱柱
棱柱的概念:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这类面围成的几何体叫做棱柱。
棱柱的性质
侧棱都相等,侧面是平行四边形;
两个底面与平行于底面的截面是全等的多边形;
过不相邻的两条侧棱的截面是平行四边形。
2、棱锥
棱锥的概念:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这类面围成的几何体叫做棱锥。
棱锥的性质:
侧棱交于一点。侧面都是三角形;
平行于底面的截面与底面是一样的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方。
3、正棱锥
正棱锥的概念:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,如此的棱锥叫做正棱锥。
正棱锥的性质:
各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
多个特殊的直角三角形。
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。