高中一年级数学上册复习要点总结

点击数:456 | 发布时间:2024-11-11 | 来源:www.gxaxsf.com

    高中一年级数学必学一的学习,需要大伙准时的对要点进行总结,如此可以提升我们的学习成绩,智学网为各位同学整理了《高中一年级数学上册复习要点总结》,期望对你的学习有所帮助!

    1.高中一年级数学上册复习要点总结 篇一


    空间角问题

    (1)直线与直线所成的角

    ①两平行直线所成的角:规定为0。

    ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

    ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

    (2)直线和平面所成的角

    ①平面的平行线与平面所成的角:规定为0。

    ②平面的垂线与平面所成的角:规定为90。

    ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

    求斜线与平面所成角的思路像求异面直线所成角:“一作,二证,三计算”。

    2.高中一年级数学上册复习要点总结 篇二


    解三角形

    正弦定理和余弦定理

    学会正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

    应用

    可以运用正弦定理、余弦定理等常识和办法解决一些与测量和几何计算有关的实质问题.

    数列

    数列的'定义和简单表示法

    ①知道数列的定义和几种简单的表示办法.

    ②知道数列是自变量为正整数的一类函数.

    等差数列、等比数列

    ①理解等差数列、等比数列的定义.

    ②学会等差数列、等比数列的通项公式与前项和公式.

    ③能在具体的问题情境中,辨别数列的等差关系或等比关系,并可以用有关常识解决相应的问题.

    ④知道等差数列与一次函数、等比数列与指数函数的关系.

    3.高中一年级数学上册复习要点总结 篇三


    集合的运算

    运算种类交集并集补集

    概念由所有是A且是B的元素所组成的集合,叫做A,B的交集.记作AB,即AB={x|xA,且xB}.

    由所有是集合A或是集合B的元素所组成的集合,叫做A,B的并集.记作:AB,即AB={x|xA,或xB}).

    设S是一个集合,A是S的一个子集,由S中所有不是A的元素组成的集合,叫做S中子集A的补集

    4.高中一年级数学上册复习要点总结 篇四


    1.函数的基本定义

    函数的概念:设A、B是非空数集,假如根据某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f和它对应,那样称f:A→B为从集合A到集合B的一个函数,记作:y=f,x∈A.

    函数的概念域、值域

    在函数y=f,x∈A中,x叫自变量,x的取值范围A叫做概念域,与x的值对应的y值叫函数值,函数值的集合{f|x∈A}叫值域.值域是集合B的子集.

    函数的三要点:概念域、值域和对应关系.

    相等函数:假如两个函数的概念域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.

    2.函数的三种表示办法

    表示函数的常用办法有:分析法、列表法、图象法.

    3.映射的定义

    一般地,设A、B是两个非空的集合,假如按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那样就称对应f:A→B为从集合A到集合B的一个映射.

    5.高中一年级数学上册复习要点总结 篇五


    一次函数

    1、概念与概念式:

    自变量x和因变量y有如下关系:

    y=kx+b

    则此时称y是x的一次函数。

    特别地,当b=0时,y是x的正比率函数。

    即:y=kx

    2、一次函数的性质:

    1.y的变化值与对应的x的变化值成正比率,比值为k即:y=kx+b

    2.当x=0时,b为函数在y轴上的截距。

    3、一次函数的图像及性质:

    1.作法与图形:通过如下3个步骤

    列表;

    描点;

    连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像仅需了解2点,并连成直线即可。

    2.性质:

    在一次函数上的任意一点P,都满足等式:y=kx+b。

    一次函数与y轴交点的坐标一直,与x轴一直交于正比率函数的图像一直过原点。

    3.k,b与函数图像所在象限:

    当k>0时,直线必通过1、三象限,y随x的增大而增大;

    当k<0时,直线必通过二、四象限,y随x的增大而减小。

    当b>0时,直线必通过1、二象限;

    当b=0时,直线通过原点

    当b<0时,直线必通过三、四象限。

    特别地,当b=O时,直线通过原点O表示的是正比率函数的图像。

    这个时候,当k>0时,直线只通过1、三象限;当k<0时,直线只通过2、四象限。

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 国家人事网(https://www.zbxggc.com/)
All Rights Reserverd ICP备18037099号-1

  • 国家人事网微博

  • 国家人事网

首页

财经

建筑

医疗